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1. INTRODUCTION 

Connected vehicle (CV) technology has the potential to help drivers and vehicles make safe, reliable, 

and informed decisions, thereby enabling network capacity optimization and congestion reduction. By 

using kinematic information obtained through vehicle-to-vehicle (V2V) communications, CVs can 

transmit kinematic state (i.e., spacing, speed, and acceleration) information to each other. Such 

information can improve drivers’ situational awareness and aid them to adjust driving behavior in 

relation to preceding vehicles. With appropriate human-machine interface (HMI) and Advanced Driver 

Assistance Systems (ADAS) to supply this information, CVs can develop cooperative driving strategies 

to enhance safety, attenuate propagation of traffic shockwaves (Jia et al., 2016; Zhou et al., 2020), and 

improve link capacity (Shladover et al., 2012; van Arem et al., 2006). This study implemented a 

cooperative driving strategy in the sense of Cooperative Adaptive Cruise Control (CACC) (Zhou et al., 

2020), in which the CVs can concatenate with predecessors to form a string-stable cooperative vehicle 

platoon. 

In the long-term, all vehicles will likely be equipped with V2V communications devices. It is expected 

to have a long transition period during which unequipped (non-communicating) and V2V-equipped 

vehicles would need to interact on the road, creating a mixed-flow traffic of human-driven vehicles 

(HDVs) and CVs. The development of CV-based safety and mobility applications should consider the 

effect of HDVs on performance in mixed-flow traffic. Specifically, platooning control of CVs in mixed-

flow traffic can entail significant challenges, particularly arising from lane changes by HDVs. In a CV 

platoon, a CV may seek a sizeable transient spacing between itself and the preceding vehicle to improve 

safety and reduce speed fluctuations. However, a sizeable transient spacing can induce lane changes by 

HDVs in adjacent lanes, precluding the CV from achieving car-following equilibrium, and generating 

additional disturbances and oscillations in the traffic upstream. A real-world field test (Milanes et al., 

2014) illustrates that during the platooning operation, the hardest deceleration occurs when an HDV 

lane change happens in front of the CV, as the reduced time headway due to the lane change creates a 

potential safety hazard that needs to be addressed quickly. This study labels such HDV lane changes 

that degrade the performance of the CV platooning control as “disruptive” lane changes. Lane changes 

are not only linked to capacity drop, traffic instability, and oscillations (Jin, 2010; Zheng et al., 2011), 

but also undermine traffic safety and induce crashes. Lane-change crashes account for 4 to 10 percent 

of all crashes (240,000 to 610,000 lane-change crashes per year), 0.5 to 1.5 percent of all motor-vehicle 

fatalities (224 to 732 fatalities per year), and almost 10 percent of all crash-caused delays (4.2 million 

hours) (Fitch et al., 2009). Hence, it is necessary to identify the presence of HDVs and their trajectories, 

understand lane-change interactions between CVs and HDVs, and analyze how CVs can leverage HDVs 

information to mitigate traffic oscillations and enhance safety in the CV platoon operations. 

As the inherent heterogeneities and randomness in human behavior can generate disturbances in the 

traffic, previous studies spend numerous efforts to predict HDV lane changes to enhance safety. For 
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example, Wissing et al. (2017) propose a quantile regression-based approach to predict an upcoming 

lane change from adjacent vehicles on highways. Izquierdo et al. (2019) compared two lane change 

prediction models, one based on convolutional neural network (CNN) and the other based on long short-

term memory (LSTM). Mahajan et al. (2020) develop an end-to-end learning-based framework to 

predict lane changes in real-time to enhance highway safety. While these studies may achieve the 

desired lane-change prediction accuracy, they do not control CVs to alleviate the adverse impacts of 

HDV lane changes. In this context, some studies develop longitudinal control models to address the 

consequences of the HDV lane changes passively; that is, they address the induced traffic oscillations 

after the lane change occurrence. Milanés and Shladover (2016) propose a time headway transition 

function in a cooperative adaptive cruise control system to handle HDV lane changes without causing 

significant perturbations. Bang and Ahn (2018) develop a spring mass damper system to mitigate the 

speed and spacing variation of the CV and its recovery time to reach the desired speed. Basiri et al. 

(2020) propose a distributed nonlinear model predictive control for CVs to handle the impact of HDV 

lane changes by maintaining desired spacings between vehicles. Zhao et al. (2020) use risk field theory 

to develop a human-like risk-response driver model for CVs to maintain road safety and traffic 

efficiency under lane changes. However, none of these studies proactively alleviate the adverse impacts 

before the HDV lane change occurs by leveraging CV longitudinal control. Jia et al. (2020) propose a 

car-following model for the CV to mimic the widely observed lane-change preclusion behavior of 

human drivers to proactively preclude HDV lane changes. However, it analyzes the influence of the 

HDV in an adjacent lane without factoring the HDV driving behavior prediction and real-time 

interactions between the CV and the HDV during the HDV lane-change process. In summary, the 

existing studies that passively handle the adverse outcomes of HDV lane changes do not consider the 

interactions between HDVs and CVs. Even the study that seeks to proactively preclude HDV lane 

changes does not leverage the HDV lane-change related traffic information (such as lane change 

intention) available to CVs to proactively preclude the occurrence of disruptive lane changes, which 

would enhance the smoothness of ambient traffic more effectively compared to the passive approaches. 

In this context, this study proposes a deep reinforcement learning-based proactive longitudinal control 

strategy (PLCS) for CVs to proactively (i.e., before the execution of an HDV lane-change maneuver) 

reduce the occurrence of lane-change traffic conditions (in terms of spacing, speed difference, and 

accelerations) that will induce disruptive lane changes (i.e., cause abrupt braking by the CV and 

oscillations in the CV platoon) by adjacent HDVs. 

In it, a Transformer-based lane-change traffic condition predictor (LTC-predictor) (Vaswani et al., 2017) 

is first constructed to predict the longitudinal driving trajectory of HDVs, and whether an HDV will 

likely perform a disruptive lane change under the ambient traffic conditions. Based on this prediction, 

the CV addresses one of two possible scenarios. In the scenario where no disruptive lane change is 

predicted, an extended intelligent driver model (EIDM)-based car-following control model is activated 

for the CV to perform smooth car-following behavior under cooperative CV platooning control. The 
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EIDM is car-following control model to regulate the trajectories of CVs in a platoon to achieve string 

stability whereby spacing perturbation would be dampened upstream in the CV platoon, and a long-

wave string stability criterion is used to constrain the parameters of the EIDM to alleviate traffic 

oscillations. In the alternative scenario that disruptive lane-change traffic conditions are indicated by 

the LTC-predictor, the Markov decision process (MDP) (Bellman, 1957) is adopted to model the 

interactions between the CV and the HDV during the possible HDV lane change. Then, a rainbow deep 

Q-network (RDQN) (Hessel et al., 2018)-based lane-change preclusion model is applied for the CV to 

alter the lane-change traffic conditions to preclude the disruptive HDV lane change under the MDP 

framework. The MDP is a discrete-time stochastic control process for modeling decision-making in 

situations where outcomes are partly random (here, due to the traffic environment) and partly under the 

control of the decision-maker (here, the CV). The RDQN learns the optimal policy in an off-policy 

manner (Sutton & Barto, 2018) which evaluates and improves a policy different from that used to 

generate the training data (i.e., the learning is from data “off” the policy). As the off-policy method does 

not always execute the best longitudinal command suggested by the optimal policy for the CV, it reduces 

training efficiency and prevents the CV from learning from mistakes in the real-world implementation. 

The proposed PLCS addresses this issue by integrating the RDQN with the LTC-predictor in the training 

process to accelerate training convergence. It assists the CV in exploring dangerous behaviors (e.g., 

motions inducing collisions) in CV-HDV interactions by generating virtual collision data from the LTC-

predictor rather than executing dangerous behaviors during the model training in the real world. To 

smoothen the control transition from the lane-change preclusion model to the car-following control 

model, a time headway transition function is developed to preclude abrupt accelerations and 

decelerations during the control transition. This function also prevents the control strategy from causing 

additional oscillations in lane-change preclusion failure cases. It is important to note that the 

fundamental mechanism of the PLCS is not to control the CV to directly block a lateral lane-change 

maneuver initiated by the HDV. Instead, its aim is to proactively reduce the occurrence of traffic 

conditions amenable to disruptive lane change before the HDV initiates a lane-change maneuver, so 

that potentially disruptive HDV lane changes can be precluded without unsafe CV-HDV interactions. 

The effectiveness of the PLCS is validated through numerical experiments using NGSIM data. Results 

indicate that the PLCS can accurately predict the HDV vehicle states, and effectively leverage the 

predicted HDV information in precluding disruptive lane changes of HDVs, ensuring safety, and 

improving the smoothness of mixed-flow traffic. Sensitivity analysis demonstrates the generalizability 

of this control strategy for different lane-change scenarios, CV control setups, and HDV driver types. 
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2. METHODOLOGY 

We consider the three-lane freeway scenario shown in Fig. 1 consisting of CVs, HDVs and a CV platoon, 

where a HDV potentially seeks to change lanes in front of the platoon’s lead vehicle. The CV platoon 

is in Lane 2, with the ego vehicle A (a CV) as its lead vehicle. Vehicle B (an HDV) is the target vehicle 

that may perform a disruptive lane change that affects the CV platoon’s string stability. The following 

assumptions are used to design the PLCS: (i) CVs can obtain the kinematic state information (position, 

speed, and acceleration) of neighboring vehicles through sensing, vehicle-to-vehicle (V2V) 

communications, and vehicle state-estimation algorithms; (ii) CVs can precisely track the planned CV 

trajectories generated by the control strategy by perfectly executing longitudinal commands; (iii) vehicle 

B is the only vehicle performing a lane change during this period, and (iv) the control frequency of the 

PLCS is set to 10Hz, i.e., each time step is 0.1 seconds in the control process. 

Figure 1. Problem illustration 

2.1 PLCS framework 

The PLCS follows the control logic illustrated in Fig. 2. First, the Transformer-based LTC-predictor 

predicts the future driving behavior of the target vehicle and the occurrence of traffic conditions for a 

potential disruptive lane change by it. If a “disruptive lane-change traffic condition” is predicted by the 
LTC-predictor, the RDQN-based lane-change preclusion model generates longitudinal commands for 

the ego vehicle to preclude such a disruptive lane change by the target vehicle. If “no disruptive lane-

change traffic condition” is predicted, a control transition indicator is activated to determine whether a 
control transition from the lane-change preclusion model to the car-following control model has 

occurred for the ego vehicle. Such a control transition can undermine string stability of the CV platoon 

by inducing abrupt accelerations and decelerations in the ego vehicle. The indicator will indicate “no 

control transition” if the lane-change preclusion model has not been activated for the past few time steps 

(e.g., 10 seconds in the study experiments, based on Smith (1985)), as a prior control transition can 

require some time to be executed. Then, the EIDM-based car-following control model is used to control 

the ego vehicle to perform smooth car-following behavior. Otherwise, the indicator indicates a “control 

5 



 

 

 

  

 

 

 

 

 

 

  

      

       

      

      

    

   

  

     

      

 

transition”; then, the time headway transition function is used in conjunction with the car-following 

control model to smoothen the control transition from lane-change preclusion to car-following control 

by avoiding abrupt accelerations and decelerations. 

Figure 2. PLCS framework 

2.2 Lane-change traffic condition predictor 

The LTC-predictor predicts the future driving behavior of the target vehicle (e.g., acceleration), and 

then indicates whether the future traffic state in its vicinity (e.g., spacings, speeds, and accelerations of 

neighboring vehicles) can imply a disruptive lane-change traffic condition. The prediction of the driving 

behavior and lane-change traffic condition are implemented using a Transformer model (Vaswani et al., 

2017). The Transformer model is a deep learning model based entirely on self-attention mechanisms, 

and differentially weighs the significance of each part of the input data. Compared to other recent 

learning models, it allows significantly more parallelization and achieves much higher training 

efficiency by processing sequential inputs (i.e., sequential traffic states in past time steps) as a whole 

and applying self-attention for information dependency. These characteristics enable the Transformer 

model to achieve high prediction accuracy for the target vehicle’s driving behavior and disruptive lane-

change traffic conditions. 
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Figure 3. The LTC-predictor framework 

The LTC-predictor use the traffic information in past few time steps to predict the driving behavior of 

the target vehicle and the disruptive lane-change traffic condition in the next time step. The framework 

of the Transformer-based LTC-predictor is illustrated in Fig. 3, and it works as follow. First, the traffic 

data is processed through the data preparation module, and shaped as input sequence, i.e., a sequence 

of input data at each time step (e.g., spacings, speeds, and accelerations of involved vehicles), and output 

sequence, i.e., a sequence of prediction results at each time step. This input sequence enters the encoder 

input embedding module as the input for the prediction process, and the output sequence enters the 

decoder input embedding module as the ground truth. Second, the embedding module reshapes the input 

sequence into sequences with a fixed dimension to fit the Transformer input structure, and the positional 

encoding module assigns positional information to all elements of the input sequence (i.e., the spacing, 

speed, and acceleration information). The positional information allows the Transformer to leverage the 

dependencies between the elements. Third, the encoder module activates attention mechanism via the 

self-attention layer to capture interactions among elements of the input sequence, by calculating their 

attention score. The attention score is defined as follows. 

𝐸𝐾𝑇 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( )𝑉 (1)
√𝑑𝑘 

where, 𝐸, 𝐾, and 𝑉 are the query, key, and value vectors of the input sequence, generated by multiplying 

the input sequence by query, key, and value weight matrices, which are randomly initialized. 𝑑𝑘 is the 

dimension of the key vector. In practice, the key and value vectors represent the input sequence, and the 

query vector refers to a specific element in the input sequence. The dot product obtains the similarity 

between the specific element and the input sequence by probability vector, the softmax function 

normalizes the probability vector, and the multiplication of value vector generates a weighted 
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representation of the input sequence. The higher attention scores the elements obtain, the more 

important their interactions are in the prediction. Similarly, the self-attention layer in the decoder 

module is used to capture the interaction among elements of the ground-truth data. Fourth, the encoder-

decoder attention layer in the decoder module activates the attention mechanism to capture the 

dependency between the predicted output and the ground-truth data. Finally, the fully connected layer 

module would process the output from the decoder module into the prediction of driving behaviors or 

disruptive lane-change traffic conditions. Please see the detailed descriptions of the Transformer 

modules in Vaswani et al. (2017). 

Specifically, for the target vehicle’s driving behavior prediction, the LTC-predictor uses the current 

speed of the target vehicle, and the speed difference and spacing between the target vehicle and the ego 

vehicle’s preceding vehicle (vehicle E in Fig. 1) in previous time steps, to obtain the acceleration of the 

target vehicle in the next time step. For predicting a disruptive lane-change traffic condition, the LTC-

predictor uses spacings between the target vehicle and its preceding vehicle (vehicle F in Fig. 1), the 

target vehicle and the ego vehicle, and the target vehicle and vehicle E, and speeds and accelerations of 

the target vehicle, ego vehicle, vehicle E, and vehicle F to indicate whether traffic conditions will induce 

a disruptive lane change by the target vehicle. 

2.3 Car-following control model 

When the traffic conditions do not imply potential disruptive lane changes by the target vehicle and the control 

transition indicator indicates “no control transition,” the ego vehicle is controlled by the EIDM-based car-

following control model. The goal of the car-following control model is to regulate the trajectories of CVs in a 

platoon to achieve string stability whereby spacing perturbation would be dampened upstream in the CV platoon. 

As shown in Fig. 4, in the implementation of the EIDM, the ego vehicle n (the CV with the rectangular box), 

which is vehicle A in Fig. 1, can receive position and speed information of the preceding HDV through onboard 

sensors, and obtain its acceleration information through vehicle state-estimation algorithms (assumption in 

Section 2.1). 

Figure 4. Implementation of EIDM 
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Other CVs, e.g., vehicle 𝑛 + 1, can receive position, speed, and acceleration information of their 

preceding CVs through onboard sensors and V2V communications. 

Correspondingly, the dynamics of a CV under the EIDM-based car-following control model are as 

follows. 

�̇�𝑛(𝑡) = 𝑣𝑛−1(𝑡) − 𝑣𝑛(𝑡) (2a) 

𝑣𝑛̇ (𝑡) = 𝐹(𝑣𝑛(𝑡), 𝑠𝑛(𝑡), 𝑠𝑛̇ (𝑡), �̈�𝑛(𝑡)) (2b) 

2 
𝑣𝑛(𝑡) 𝜎 𝑠∗(�̇�𝑛(𝑡),𝑣𝑛(𝑡))

where 𝐹(𝑣𝑛, 𝑠𝑛, �̇�𝑛, �̈�𝑛) = 𝜙𝑎0 [1 − ( ) − ( ) ] + 𝜓�̈� is the EIDM-based car-𝑛 𝑣𝑑𝑒𝑠 𝑠𝑛(𝑡) 

following control law which regulates the acceleration of the ego vehicle 𝑛. 

It should be noted that the time index in this section is denoted as 𝑡 for continuous time, while 𝑘 in the 

previous section is used to denote discrete time steps. 𝑣𝑛(𝑡) and 𝑣𝑛−1(𝑡) are the speed of vehicles 𝑛 and 

𝑛 − 1, respectively. 𝑠𝑛(𝑡) = 𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) , 𝑠𝑛̇ (𝑡) , and 𝑠𝑛̈ (𝑡) are the spacing, speed difference, and 

acceleration difference between vehicles 𝑛 − 1 and 𝑛, respectively. 𝑥𝑛(𝑡) is the position of vehicle 𝑛. 
𝑣𝑛(𝑡)𝑠�̇� (𝑡)

Also, 𝑠∗(�̇�𝑛(𝑡), 𝑣𝑛(𝑡)) = 𝑠0 + 𝑣𝑛(𝑡)𝑇𝑑𝑒𝑠 − is the desired spacing during the car-following 
2√𝑎0𝑏0 

process, where 𝑎0 and 𝑏0 are the maximum acceleration and the desired deceleration, respectively. 𝑠0 

is the jam spacing, 𝑣𝑑𝑒𝑠 is the desired speed, 𝑇𝑑𝑒𝑠 is the desired safe time headway (minimum time 

headway to guarantee no collision between the ego vehicle and its preceding vehicle), and 𝜎 is the free 

acceleration exponent. 𝜙 ∈ ℝ+ is the sensitivity coefficient corresponding to car-following interactions 

and influences the acceleration variation of vehicle 𝑛 with respect to spacing 𝑠𝑛(𝑡) and speed difference 

�̇�𝑛(𝑡). 𝜓 ∈ ℝ+ is the sensitivity coefficient with respect to the acceleration difference and modulates 

the acceleration of vehicle 𝑛 to maintain the same pace with the preceding vehicle 𝑛 − 1. Then we 

introduce the definition of head-to-tail string stability. 

Definition 1: (Head-to-tail string stability) A 𝑁-vehicle 𝒩 is head-to-tail string stable if the following 

condition holds (Feng et al., 2019): 

𝑣𝑁(𝑖𝜔)
‖𝐺1,𝑁(𝑖𝜔)‖ = ‖ ‖ ≤ 1 (3)

𝐻∞ 𝑣1(𝑖𝜔) 𝐻∞ 

where 𝑖 is the complex number indicator, 𝜔 is the angular frequency. The head-to-tail string stability 

indicates that the speed perturbation will not be amplified from the first vehicle to the last vehicle in a 

platoon. Correspondingly, the parameters in EIDM-based car-following control model are tuned based 

on the following Lemma 1 to ensure the head-to-tail string stability of the CV platoon. The time variable 

(𝑡) is omitted hereafter for simplicity. 
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Lemma 1: A 𝑁-vehicle CV platoon 𝒩 is head-to-tail string stable if the following condition holds: 

𝑁∑𝑛=1(𝑔𝑛,2 + 𝑓𝑛
3) < 0 (4a) 

𝑁 2 24)∏ 3)∏∑𝑛=1(𝑔𝑛,1 + 𝑓𝑛 𝑚≠𝑛 𝑓𝑚 + ∑𝑝≠𝑞,𝑞>𝑝(𝑔𝑝,2𝑔𝑞,2 + 𝑓𝑝
3𝑓𝑞 𝑚≠𝑝,𝑞 𝑓𝑚 > 0 (4b) 

1 1 𝜎 𝑣𝑒𝑞 
𝜎−1 2(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑇𝑑𝑒𝑠 

where 𝑔𝑛,1 = (1 + 𝑓𝑛
4) , 𝑔𝑛,2 = (𝑓𝑛

3 − 𝑓𝑛−1 + 𝑓𝑛
1) , 𝑓𝑛 = −𝜙𝑎0 [ ( ) + 

2 ] ,
𝑣𝑑𝑒𝑠 𝑣𝑑𝑒𝑠 𝑠𝑒𝑞 

2 
2 2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠) 3 2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑣𝑒𝑞 4𝑓𝑛 = 𝜙 , 𝑓𝑛 = 𝜙 , 𝑓𝑛 = 𝜓, 𝑛 ∈ 𝒩. 

𝑠𝑒𝑞
3 𝑠𝑒𝑞

2√𝑎0𝑏0 

Proof: The head-to-tail string stability analysis quantifies the variations of spacing perturbation in a 𝑁-

vehicle CV platoon 𝒩 at the car-following equilibrium expressed as: 

𝑒 𝑒 𝑒 𝑢𝑒𝑞 = (𝑣𝑛 , 𝑠𝑛, 𝑠𝑛̇ , �̈�𝑛
𝑒), 𝑛 ∈ 𝒩 (5) 

𝑒 𝑒 where 𝑣𝑛 = 𝑣0 is the desired operating speed, 𝑠𝑛
𝑒 is the desired spacing, �̇� = 0 is the desired speed 𝑛 

difference, and �̈�𝑒 is the desired acceleration difference. The spacing perturbation is expressed as: 𝑦𝑛 = 𝑛 

𝛿𝑥𝑛−1 − 𝛿𝑥𝑛 , where 𝛿𝑥𝑛−1 and 𝛿𝑥𝑛 are the position deviations from their desired ones at the car-

following equilibrium. With the impact of spacing perturbation 𝑦𝑛 , the speed of vehicle 𝑛 becomes 

𝑣𝑛 = 𝑣𝑛
𝑒 + 𝛿𝑣𝑛, the spacing becomes 𝑠𝑛 = 𝑠𝑛

𝑒 + 𝑦𝑛, the speed difference becomes �̇�𝑛 = �̇�𝑛
𝑒 + 𝑦𝑛̇ , and 

the acceleration difference becomes �̈� = �̈�𝑒 + 𝑦𝑛̈ . Next, we discuss how to ensure that the spacing 𝑛 𝑛 

perturbation is not amplified in the CV platoon 𝒩. 

First, we express the variations of spacing perturbation around the equilibrium 𝑢𝑒𝑞 as: 

𝑦𝑛̈ = 𝐹(𝑣𝑛−1, 𝑠𝑛−1, �̇�𝑛−1, �̈�𝑛−1) − 𝐹(𝑣𝑛, 𝑠𝑛, 𝑠𝑛̇ , 𝑠𝑛̈ ) (6) 

Then, we linearize �̈� around the car-following equilibrium (5) through Taylor’s first-order 𝑛 

approximation: 

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 1 2�̈�𝑛 = 𝐹(𝑣𝑛−1, 𝑠𝑛−1, �̇�𝑛−1, �̈�𝑛−1) − 𝐹(𝑣𝑛 , 𝑠𝑛, �̇� , �̈�𝑛
𝑒) + (𝑓𝑛−1 − 𝑓𝑛

1)�̇�𝑛 + (𝑓𝑛−1𝑦𝑛−1 − 𝑓𝑛
2𝑦𝑛) +𝑛 

3 4(𝑓𝑛−1�̇�𝑛−1 − 𝑓𝑛
3𝑦𝑛̇ ) + (𝑓𝑛−1�̈�𝑛−1 − 𝑓𝑛

4𝑦𝑛̈ ) (7) 

2𝜎−1 
1 𝜎 𝑣𝑒𝑞 2(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑇𝑑𝑒𝑠 2 2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)

where 𝑓𝑛 = −𝜙𝑎0 [ ( ) + 
2 = 𝜙 ,], 𝑓𝑛 3𝑣𝑑𝑒𝑠 𝑣𝑑𝑒𝑠 𝑠𝑒𝑞 𝑠𝑒𝑞 

3 2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑣𝑒𝑞 4𝑓𝑛 = 𝜙 , 𝑓𝑛 = 𝜓. 
𝑠𝑒𝑞

2√𝑎0𝑏0 
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𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒) = 0Correspondingly, because 𝐹(𝑣𝑛−1, 𝑠𝑛−1, �̇� , �̈� ) = 𝐹(𝑣𝑛 , 𝑠𝑛, �̇� , �̈� at the car-following 𝑛−1 𝑛−1 𝑛 𝑛 

equilibrium (5), the following equality is obtained: 

1 4 3 2(1 + 𝑓𝑛
4)𝑦𝑛̈ + (𝑓𝑛

3 − 𝑓𝑛−1 + 𝑓𝑛
1)𝑦𝑛̇ + 𝑓𝑛

2𝑦𝑛 = 𝑓𝑛−1�̈�𝑛−1 + 𝑓𝑛−1�̇�𝑛−1 + 𝑓𝑛−1𝑦𝑛−1 (8) 

Applying the ring-road long-wave string stability method (Ward, 2009), we consider the following 

exponential ansatz to factorize the spacing perturbation of vehicle 𝑛: 

𝑦𝑛(𝑡) = 𝐴𝑛𝑒𝑖𝜔𝑛+𝜆𝑡 (9) 

where 𝐴𝑛 is the magnitude of the perturbation, 𝑖 is the complex number indicator, 𝜔 is the angular 

frequency, and 𝜆 is the characteristic root reflecting the decay/growth of the spacing perturbation in the 

platoon. 𝜆 > 0 indicates string instability whereby the spacing perturbation grows upstream in the 

platoon, while 𝜆 < 0 implies string stability whereby the spacing perturbation is dampened upstream 

in the platoon. 𝜆 = 0 is referred to as the marginal string stability whereby the spacing perturbation 

remains the same upstream in the platoon. 

Substituting Equation (9) into Equation (8): 

2] = 𝐴𝑛−1𝑒
−𝑖𝜔(𝑓𝑛

4
−1 

3 2𝐴𝑛[𝑔𝑛,1𝜆
2 + 𝑔𝑛,2𝜆 + 𝑓𝑛 𝜆2 + 𝑓𝑛−1𝜆 + 𝑓𝑛−1) (10) 

1where 𝑔𝑛,1 = (1 + 𝑓𝑛
4) , 𝑔𝑛,2 = (𝑓𝑛

3 − 𝑓𝑛−1 + 𝑓𝑛
1) . Correspondingly, we can aggregate the spacing 

perturbations of a 𝑁-vehicle CV platoon as: 

(𝑀1𝜆
2 + 𝑀2𝜆 + 𝑀3)𝐴 = 0 (11) 

where 𝐴 = [𝐴1, 𝐴2, … , 𝐴𝑁]⊺, and 𝑀1, 𝑀2, and 𝑀3 are expressed as follows: 

𝑔1,1 0 ⋯ 0 −𝑒−𝑖𝜔𝑓𝑁 
4 

−𝑒−𝑖𝜔𝑓1 
4 𝑔2,1 0 ⋯ 0 

𝑀1 = 0 −𝑒−𝑖𝜔𝑓2 
4 𝑔3,1 ⋯ 0 , 

0 0 −𝑒−𝑖𝜔𝑓3 
4 ⋱ ⋮ 

[ 0 0 ⋯ −𝑒−𝑖𝜔𝑓𝑁−1 
4 𝑔𝑁,1 ] 

−𝑒−𝑖𝜔𝑓𝑁
3𝑔1,2 0 ⋯ 0 

−𝑒−𝑖𝜔𝑓1
3 𝑔2,2 0 ⋯ 0 

−𝑒−𝑖𝜔𝑓2
3𝑀2 = 0 𝑔3,2 ⋯ 0 , 

−𝑒−𝑖𝜔𝑓3
30 0 ⋱ ⋮ 

−𝑒−𝑖𝜔𝑓𝑁
3
−1[ 0 0 ⋯ 𝑔𝑁,2 ] 
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2𝑓1 0 ⋯ 0 −𝑒−𝑖𝜔𝑓𝑁 
2 

−𝑒−𝑖𝜔𝑓1 
2 2𝑓2 0 ⋯ 0 

𝑀3 = 0 −𝑒−𝑖𝜔𝑓2 
2 2𝑓3 ⋯ 0 . 

0 0 −𝑒−𝑖𝜔𝑓3 
2 ⋱ ⋮ 

[ 0 0 ⋯ −𝑒−𝑖𝜔𝑓𝑁−1 
2 2𝑓𝑁 ] 

To ensure Equation (10) is validError! Reference source not found., we require the determinant of 

𝑀1𝜆
2 + 𝑀2𝜆 + 𝑀3 to be zero: 

𝑁 + 𝑒−𝑖𝑁𝜔 ∏𝑁 det(𝑀1𝜆
2 + 𝑀2𝜆 + 𝑀3) = ∏𝑛=1(𝑔𝑛,1𝜆

2 + 𝑔𝑛,2𝜆 + 𝑓𝑛
2) 𝑛=1(𝑓𝑛

4𝜆2 + 𝑓𝑛
3𝜆 + 𝑓𝑛

2) = 0 (12) 

To solve Equation (12), we expand the characteristic root 𝜆 and 𝑒−𝑖𝑁𝜔 into the power series solutions: 

𝜆 = 𝑖𝜆1𝜔 + 𝜆2𝜔
2 + 𝒪(𝜔3) (13a) 

𝑒−𝑖𝑁𝜔 = 1 − 𝑖𝑁𝜔 − 
𝑁2 

𝜔2 + 𝒪(𝜔3) (13b)
2 

where 𝒪(𝜔3) represents the higher order terms which can be omitted. 

Substituting Equations (13a) and (13b) into Equation (12), we have the following equality for the first-

order characteristic root: 

𝑁 2 𝑁 3 2 𝑁 2𝒪(𝜔) = 𝑖𝜆1 ∑ 𝑔𝑛,2 ∏ 𝑓𝑚 + 𝑖𝜆1 ∑ 𝑓𝑛 ∏ 𝑓𝑚 − 𝑖𝑁 ∏ 𝑓𝑛 (14)𝑛=1 𝑚≠𝑛 𝑛=1 𝑚≠𝑛 𝑛=1 

Thus, by setting 𝒪(𝜔) = 0, the first-order characteristic root is computed as: 

𝑁 2𝑁 ∏𝑛=1 𝑓𝑛 𝜆1 = 𝑁 2 (15)
∑𝑛=1(𝑔𝑛,2+𝑓𝑛

3) ∏𝑚≠𝑛 𝑓𝑚 

Similarly, for the second-order characteristic root, we have the following equality: 

𝑁 2 2 2 𝑁 2𝒪(𝜔2) = ∑𝑛=1(−𝑔𝑛,1𝜆1 + 𝑔𝑛,2𝜆2) ∏𝑚≠𝑛 𝑓𝑚 − 𝜆1
2 ∑𝑝≠𝑞,𝑞>𝑝 𝑔𝑝,2𝑔𝑞,2 ∏𝑚≠𝑝,𝑞 𝑓𝑚 + ∑𝑛=1(−𝑓𝑛

4𝜆1 + 

2 3 2 𝑁 3 2 𝑁 2𝑓𝑛
3𝜆2)∏𝑚≠𝑛 𝑓𝑚 − 𝜆1

2 ∑𝑝≠𝑞,𝑞>𝑝 𝑓𝑝
3𝑓𝑞 ∏𝑚≠𝑝,𝑞 𝑓𝑚 + 𝑁𝜆1 ∑𝑛=1 𝑓𝑛 ∏𝑚≠𝑛 𝑓𝑚 −

𝑁2

∏𝑛=1 𝑓𝑛 (16)
2 

By setting 𝒪(𝜔2) = 0, the second-order characteristic root is determined as: 

𝑁 3 2 𝑁2
𝑁 2𝐵𝜆1

2−𝜆1𝑁 ∑ 𝑓𝑛 ∏ 𝑓𝑚+ ∏ 𝑓𝑛 𝑛=1 𝑚≠𝑛 𝑛=1
𝜆2 = 2 (17)3) ∏∑𝑛

𝑁
=1(𝑔𝑛,2+𝑓𝑛 𝑚≠𝑛 𝑓𝑚

2 

𝑁 2 2where 𝐵 = ∑𝑛=1(𝑔𝑛,1 + 𝑓𝑛
4) ∏𝑚≠𝑛 𝑓𝑚 + ∑𝑝≠𝑞,𝑞>𝑝(𝑔𝑝,2𝑔𝑞,2 + 𝑓𝑝

3𝑓𝑞
3) ∏𝑚≠𝑝,𝑞 𝑓𝑚. 
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As the characteristic root needs to be negative for string stability, and 𝑓𝑛
1 < 0, 𝑓𝑛

2 ≥ 0, 𝑓𝑛
3 ≥ 0, 𝑓𝑛

4 > 0, 

then, to ensure 𝜆1 < 0, the following inequality needs to be satisfied: 

𝑁∑ (𝑔𝑛,2 + 𝑓𝑛
3) < 0 (18)𝑛=1 

𝑁2 
𝑁 3 2 𝑁 2To guarantee 𝜆2 < 0, we further require 𝐵𝜆1

2 − 𝜆1𝑁 ∑𝑛=1 𝑓𝑛 ∏𝑚≠𝑛 𝑓𝑚 + 
2 

∏𝑛=1 𝑓𝑛 > 0, which can 

be realized by the following inequality: 

𝑁 2 2∑𝑛=1(𝑔𝑛,1 + 𝑓𝑛
4) ∏𝑚≠𝑛 𝑓𝑚 + ∑𝑝≠𝑞,𝑞>𝑝(𝑔𝑝,2𝑔𝑞,2 + 𝑓𝑝

3𝑓𝑞
3) ∏𝑚≠𝑝,𝑞 𝑓𝑚 > 0 (19) 

Thereby, to ensure the head-to-tail string stability of a CV platoon, we require inequalities (18) and (19) 

to be valid. This completes the proof.  ∎ 

Note that the string stability region (4) can be applied to both homogeneous (i.e., vehicles in a platoon 

share the same parameters) and heterogenous CV platoons to tune the parameters of each CV in the 

platoon, which enables flexibility for real-world applications. 

2.4 Lane-change preclusion model 

If the traffic environment is identified as satisfying the traffic condition for a disruptive lane change by 

the target vehicle, the lane-change preclusion model takes over and controls the ego vehicle to preclude 

the potential HDV lane change. To develop the lane-change preclusion model, first, the interactions 

between the CV and the HDV in the traffic environment are modeled using the Markov decision process 

(MDP) (Bellman, 1957). As shown in Fig. 5, the goal of an MDP is to obtain the optimal policy that 

specifies actions to maximize a reward function. 

Figure 5. MDP framework 
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Here, the agent is the ego vehicle, and the environment is the traffic environment around the ego vehicle, 

i.e., the scenario including the ego vehicle, the target vehicle, and the neighboring vehicles C, D, E, and 

F as shown in Fig. 1. The “state” refers to the positions and speeds of vehicles in the traffic environment, 

𝒛 = [𝒛𝐶, 𝒛𝐸, 𝒛𝑒𝑔𝑜 , 𝒛𝑡𝑎𝑟 , 𝒛𝐹, 𝒛𝐷] , {𝒛𝑖 denoted as where = [𝑥𝑖, 𝑣𝑖]|𝑖 = 𝐶, 𝐸, 𝑒𝑔𝑜, 𝑡𝑎𝑟, 𝐹, 𝐷} represent 

vehicle states, their superscripts/subscripts 𝐶, 𝐸, 𝑒𝑔𝑜, 𝑡𝑎𝑟, 𝐹, and 𝐷 refer to vehicle C, vehicle E, the 

ego vehicle, the target vehicle, vehicle F, and vehicle D shown in Fig. 1, and 𝑥𝑖, 𝑣𝑖 are positions and 

speeds of the corresponding vehicles. The “action”, denoted as 𝑢 , is specified as the controlled 

acceleration 𝑎 of the ego vehicle. In this study, we define the action 𝑢 in a discrete action space 𝑈, i.e., 

𝑢 ∈ 𝑈, of which the specific values will be discussed later in the numerical experiments section. The 

reward function is designed to: (i) preserve traffic smoothness in the CV platoon by precluding potential 

disruptive lane changes by the target vehicle, (ii) ensure safety of the ego vehicle, (iii) ensure motion 

comfort of the ego vehicle, and (iv) ensure the speed homogeneity of the CV platoon. The reward 

function at each time step 𝑘 is defined as follows. 

𝑅(𝑘) = 𝑅𝑙(𝑘) + 𝑅𝑐(𝑘) + 𝑅𝑠(𝑘) + 𝑅𝑎(𝑘) + 𝑅𝑣(𝑘) (20) 

The components of the reward function are: 

(1) Cost of a disruptive lane change by the target vehicle: 𝑅𝑙(𝑘) = 𝜃𝑙 ⋅ 𝐿𝐶(𝑘), where 𝐿𝐶(𝑘) = {0,1} (0 

indicates the occurrence of a disruptive lane change by the target vehicle at current time step 𝑘, and 1 

otherwise). 𝜃𝑙 is a positive scaling parameter to ensure that the lane-change reward component is of 

comparable magnitude to other reward components in Equation (20). Similar scaling parameters 

{ 𝜃𝑗| 𝜃𝑗 > 0, 𝑗 = 𝑙, 𝑠, 𝑎, 𝑣 } are specified for most of the other reward components as well. The scaling 

parameters are determined based on a trial-and-error method to achieve the desired lane-change 

preclusion performance while retaining smoothness and safety. Their specific values will be discussed 

later in the numerical experiments section. Reward component 𝑅𝑙(𝑘) fosters the preclusion of a 

disruptive lane change by the target vehicle so that traffic smoothness can be preserved for the CV 

platoon. 

−δ, 𝑠(𝑘) < 𝑠safe 𝑜𝑟 𝑣(𝑘) < 0 
(2) Cost of safety of the ego vehicle: 𝑅𝑐(𝑘) = { , where 𝑠(𝑘) is the 

0, otherwise 
spacing between the ego vehicle and its preceding vehicle at current time step 𝑘, 𝑠safe is the minimum 

spacing to guarantee no collision between the ego vehicle and its preceding vehicle , and 𝑣(𝑘) is the 

current speed of the ego vehicle. δ (δ > 0) is a large enough penalty value to ensure that undesired 

situations (𝑠(𝑘) < 𝑠safe 𝑜𝑟 𝑣(𝑘) < 0) will not occur. 
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(3) Cost of spacing between the ego vehicle and its preceding vehicle: 𝑅𝑠(𝑘) = 
2𝑠(𝑘)

𝜃𝑠 ⋅ ( ) , if 𝑠(𝑘) ≤ 𝑠des 𝑠des { 2 , where 𝑠des is the desired spacing between the ego vehicle and its 
𝑠des 𝜃𝑠 ⋅ ( ) , otherwise 
𝑠(𝑘) 

preceding vehicle. This reward component complements the lane-change preclusion and safety reward 

components by maintaining the desired spacing to avoid lane changes by the target vehicle due to large 

spacings or crashes due to small spacings. 

2|𝑎(𝑘) −�̅�(𝑘)|
(4) Cost of motion comfort of the ego vehicle: 𝑅𝑎(𝑘) = 𝜃𝑎 ⋅ (1 − ) , where 𝑎(𝑘) is the 

𝑎max−𝑎min 

acceleration of the ego vehicle at current time step 𝑘, �̅�(𝑘) is the average longitudinal acceleration of 

the ego vehicle in the past few time steps (e.g., 5 seconds), and 𝑎max and 𝑎min are the maximum and 

minimum accelerations that the ego vehicle can apply, respectively. This reward component ensures 

motion comfort of the ego vehicle. 

4
|𝑣(𝑘)−𝑣pre(𝑘)|

𝜃𝑣 ⋅ (1 − ) , if |𝑣(𝑘) − 𝑣pre(𝑘)| ≤ 𝑣pre(𝑘)
(5) Cost of speed homogeneity: 𝑅𝑣(𝑘) = { 𝑣pre(𝑘) , 

0 , otherwise 
where 𝑣pre(𝑘) is the target speed of the ego vehicle (i.e., the mean speed of the preceding vehicle in the 

immediate past time step). This reward component ensures the speed homogeneity of the CV platoon.  

It is challenging to solve the MDP problem in the context of mixed-flow traffic, as the future driving 

behaviors of HDVs are unknown to the ego vehicle. To handle such an unknown environment, we use 

a reinforcement learning (RL) framework (Sutton & Barto, 2018) to solve the MDP problem. RL is a 

strong artificial intelligence (AI) paradigm which teaches the ego vehicle based on interactions with the 

traffic environment and learning from mistakes. A commonly used value-based RL algorithm, Q-

learning (Watkins & Dayan, 1992) is adopted in this study, as Q-learning enables learning from past 

memory (i.e., historical traffic data). The Q-learning algorithm introduces a Q-function to map the state-

action pair and Q-value to generate the optimal policy; here, Q-value is defined as the expected 

cumulative reward from taking a certain action in the current state and acting optimally thereafter. The 

Q-value at time step 𝑘 can be expressed as: 

𝑄(𝒛(𝑘) , 𝑢(𝑘)) = 𝑅(𝑘) + 𝛾 ⋅ 𝑚𝑎𝑥 𝑄(𝒛(𝑘 + 1) , 𝑢(𝑘 + 1) ) (21)
𝑢(𝑘+1) 

where 𝒛(𝑘) and 𝑢(𝑘) are the state and action at the current time step 𝑘 in the lane-change process, 

respectively, and 𝛾 is the discount factor which determines how important future rewards are to the 

current state. 
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The Q-learning algorithm updates the Q-function based on the Bellman equation (Bellman, 1957), 

𝑄(𝒛(𝑘) , 𝑢(𝑘) ) ← (1 − 𝜂) ⋅ 𝑄(𝒛(𝑘) , 𝑢(𝑘) ) + 𝜂 ⋅ [𝑅(𝑘) + 𝛾 ⋅ 𝑚𝑎𝑥 𝑄(𝒛(𝑘 + 1), 𝑢(𝑘 + 1))] (22)
𝑢(𝑘+1) 

where 𝜂 is the learning rate, i.e., the step size of the ego vehicles’ Q-function update during model 

training. The Q-function is updated iteratively until convergence. 

The Q-learning-based algorithm used here is the state-of-the-art rainbow deep Q-network (RDQN) 

algorithm (Hessel et al., 2018). The RDQN combines the latest improvements in deep Q-network 

algorithms, e.g., double Q-learning, dueling networks, multi-step bootstrapping, prioritized replay 

buffer, distributional RL, noisy deep Q-network, etc., gaining high performance in Q-value estimation, 

learning efficiency, bias-variance trade-off, and control policy exploration (Hessel et al., 2018). In this 

study, we incorporate the RDQN with the convolutional neural network (CNN) (Mnih et al., 2013, 

Schmidhuber, 2015) to deal with the numerous states and actions in this MDP problem and capture the 

structural information in the state 𝒛, which is two-dimensional array consisting of position and speed 

information of all involved vehicles following a specific order to represent connections among vehicles. 

Figure 6. Integration of LTC-predictor with RDQN model training 
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The RDQN obtains only one training sample of a specific action executed by the ego vehicle at each 

time step in the model training process, limiting sampling productivity and training efficiency. 

Moreover, the training process of Q-learning-based algorithms is relatively expensive, specially, in the 

beginning steps, as state-action pairs need to be visited frequently to converge to the optimal policy 

(Pouyan et al., 2014). Thus, a large amount of training samples over the whole action space at each time 

step can significantly improve training efficiency of the RDQN. To this end, the PLCS integrates the 

RDQN with the LTC-predictor in the training process to accelerate training convergence, as shown in 

Fig. 6. The RDQN-based lane-change preclusion model consists of four modules: a MDP module that 

generates rewards corresponding to given states and actions, a replay memory module storing state-

action-reward data (i.e., training data) for model training, a CNN module (i.e., deep neural network) 

(Schmidhuber, 2015) updating the new control policy for the ego vehicle, and a policy rollouts module 

(i.e., action generator) generating new actions of the ego vehicle in the traffic environment. Specifically, 

an epsilon greedy algorithm is applied in the policy rollouts module to balance the exploitation of 

actions generated by the trained control policy and exploration of any available actions in the action 

space. The epsilon 𝜖 refers to the probability of choosing exploration, that is, the algorithm performs 

exploration with probability 𝜖 and exploitation with probability 1 − 𝜖. The 𝜖 is set with a large value 

for more explorations in the beginning stage of the training process and then decay to a small value for 

more exploitations. In the conventional model training process of the RDQN, after the action execution 

by the ego vehicle in previous time step, the ego vehicle detects the current state 𝒛 newly generated by 

the traffic environment and sends it to the MDP module. The MDP module generates the corresponding 

reward 𝑅 for the received state 𝒛 and executed action 𝑢, and passes the state-action-reward data, i.e., a 

training sample 𝒅 = [𝒛, 𝑢, 𝑅], to the replay memory module. Then, the replay memory module feeds 

the CNN module with training samples, and a new control policy for the ego vehicle is generated by the 

CNN module and updated to the policy rollouts module for a new action generation. The newly 

generated action is then executed by the ego vehicle in the traffic environment. This iterative procedure 

is repeated until the convergence of the CNN module is reached. 

However, the conventional RDQN training collects only one training sample for the executed action of 

the ego vehicle at each time step, limiting training efficiency. In our study, the integrated LTC-predictor 

generates additional training samples to accelerate the training convergence, as shown in Fig. 6. Based 

on the state in the previous time step, the LTC-predictor predicts virtual states over all possible actions 

(instead of only one action executed by the ego vehicle), sends them to the MDP module for reward 

generations, and passes the virtual training samples {�̃�} over all possible actions to the replay memory 

module, where �̃� = [�̃�, �̃�, �̃�] represent a virtual training sample for any possible action �̃� ∈ 𝑈 , the 

corresponding virtual state �̃�, and reward �̃�. Hence, the replay memory module collects not only one 

training sample 𝒅 from the executed action by the ego vehicle, but also virtual training samples {�̃�} 
over all possible actions without actual executions, enhancing the training data exploration of the RDQN 

and accelerating the training convergence. 
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Remark 1: To maintain safety during real-world implementation, the conventional RDQN prevents the 

ego vehicle from executing dangerous behaviors (e.g., actions inducing collisions) in the CV-HDV 

interactions, and sequentially suppresses learning from mistakes adaptively with real-time collision data. 

This can significantly undermine the safety performance of the RDQN in the real world. By contrast, in 

the PLCS, the integrated LTC-predictor generates virtual training data induced from dangerous 

behaviors. This enables the ego vehicle to learn from mistakes adaptively while circumventing the 

execution of dangerous behaviors in CV-HDV interactions, which further enhances the safety 

performance of the RDQN in different traffic conditions. 

2.5 Time headway transition function 

If the LTC-predictor does not predict potential disruptive lane changes by the target vehicle and the 

control transition indicator indicates “control transition”, the time headway transition function is 

activated to assist the car-following control model to smoothen the control transition from lane-change 

preclusion to car-following control. As the ego vehicle needs to accelerate to reduce the spacing to 

achieve lane-change preclusion, this induces a large speed for the ego vehicle and a small spacing 

between it and its preceding vehicle. This phenomenon further leads to the ego vehicle’s abrupt 
deceleration when it switches from the lane-change preclusion model to the car-following control model. 

Remarkably, if lane-change preclusion control fails to preclude a disruptive lane change by the target 

vehicle, the ego vehicle will switch back to car-following control to deal with the lane change by the 

target vehicle. This will cause abrupt decelerations by the ego vehicle as the lane-change preclusion 

model further reduces the spacing during the control process, which leads to even smaller time 

headways after failing to preclude the lane change by the target vehicle. 

To mitigate the potential oscillations generated by the non-smooth control transition from the lane-

change preclusion model to the car-following control model, this study proposes a time headway 

transition function to adjust the desired time headway of the car-following control model. This function 

is inspired by the lane-change relaxation phenomenon of human drivers (Smith, 1985), where a human 

driver would initially accept a smaller time headway when experiencing a cut-in, then gradually recover 

to the original desired time headway (this process typically lasts for 20-30 seconds). The time headway 

transition function is specified as follows: 

𝑡 
𝑇(𝑡) = max{𝑇0, 𝑇𝑚𝑖𝑛} + (𝑇𝑑𝑒𝑠 − max{𝑇0, 𝑇𝑚𝑖𝑛}), (23)

𝐻 

where 𝑇0 is the zero-acceleration time headway at the start of the control transition. 𝑇0 stimulates the 

car-following control model to generate an action of zero acceleration (i.e., Equation (2b) equals zero) 

given the current speed. 𝑇𝑚𝑖𝑛 denotes the minimum time headway to guarantee the safety of the ego 

vehicle. Its value depends on the operating speed and vehicle braking capability in real-world 

implementation (e.g., the time for the ego vehicle to decelerate to the speed of its preceding vehicle 
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using the maximum braking power). 𝑇𝑑𝑒𝑠 denotes the original desired time headway of the ego vehicle. 

𝑇(𝑡) is the new desired time headway at time 𝑡, and 𝐻 refers to the dwelling time length of the control 

transition. Equation (23) states that after the lane-change preclusion is completed, the ego vehicle first 

applies the car-following control model with the time headway 𝑇0 to preclude an undesired abrupt 

deceleration (proved by lemma 2). Then, it linearly adjusts the desired time headway to approach the 

original desired time headway 𝑇𝑑𝑒𝑠 after a dwelling time of 𝐻, without jeopardizing the local stability1 

and string stability of the car-following control model (proved by lemmas 2 and 3). Note that increasing 

𝐻 can potentially reduce speed fluctuations during the control transition, but it can take longer to recover 

to the original desired time headway. Hence, a large 𝐻 is undesirable as it makes the car-following 

control model work under a smaller time headway for longer time, which can jeopardize string stability 

performance in the car-following control process. 

As the car-following control model is implemented based on the EIDM, the zero-acceleration time 

headway 𝑇0 is correspondingly derived as: 

𝜎 𝑠𝑛 𝑣𝑛 𝑘𝑔�̈�𝑛 𝑠0 �̇�𝑛 𝑇0 = √1 − ( ) + − + . (24)
𝑎0 2√𝑎0𝑏0𝑣𝑛 𝑣𝑑𝑒𝑠 𝑣𝑛 

Lemma 2: The time headway transition function can ensure smaller deceleration during the control 

transition. 

Proof: After the execution of lane-change preclusion, the spacing between the ego vehicle and its 
𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 

preceding vehicle shrinks to a value 𝑠𝑛 . Because 𝑠𝑛 is smaller than the equilibrium 
𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 

spacing 𝑠𝑛
𝑒, the EIDM-based car-following control model will cause a large deceleration 𝑎𝑏𝑟𝑎𝑘𝑒 : 

2𝑣𝑛(𝑡)�̇�𝑛(𝑡) 
𝜎 𝑠0+𝑣𝑛(𝑡)𝑇𝑑𝑒𝑠− 

𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑣𝑛(𝑡) 2√𝑎0𝑏0𝑎𝑏𝑟𝑎𝑘𝑒 = 𝜙𝑎0 [1 − ( ) − ( 𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 ) ] + 𝜓𝑠𝑛̈ (25)
𝑣𝑑𝑒𝑠 𝑠𝑛 (𝑡) 

With the time headway transition function, the desired time headway is adjusted from 𝑇𝑑𝑒𝑠 to 𝑇(𝑡) = 
𝑡 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 max{𝑇0, 𝑇𝑚𝑖𝑛} + (𝑇𝑑𝑒𝑠 − max{𝑇0, 𝑇𝑚𝑖𝑛}) . Correspondingly, the deceleration 𝑎𝑏𝑟𝑎𝑘𝑒 under the 
𝐻 

time headway transition function can be expressed as: 

2𝑣𝑛(𝑡)�̇�𝑛(𝑡) 
𝜎 𝑠0+𝑣𝑛(𝑡)𝑇0−

𝑣𝑛(𝑡) 2√𝑎0𝑏0𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝜙𝑎0 [1 − ( ) − ( ) ] + 𝜓�̈� (26)𝑎𝑏𝑟𝑎𝑘𝑒 𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑛 𝑣𝑑𝑒𝑠 𝑠𝑛 (𝑡) 

1 The local stability indicates that the spacing perturbation will decay to zero with time, instead of growing to unbounded 

values or fluctuating throughout the control process. 
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𝑣𝑛(𝑡)�̇�𝑛(𝑡) 𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 
As 𝑇0 < 𝑇𝑑𝑒𝑠 , the spacing interaction term 𝑠0 + 𝑣𝑛(𝑡)𝑇0 − will be closer to 𝑠𝑛 (𝑡)

2√𝑎0𝑏0 

𝑣𝑛(𝑡)�̇� 𝑝𝑟𝑒𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑛(𝑡) 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛| < |𝑎𝑏𝑟𝑎𝑘𝑒 than 𝑠0 + 𝑣𝑛(𝑡)𝑇𝑑𝑒𝑠 − , which sequentially indicates that |𝑎𝑏𝑟𝑎𝑘𝑒 | . This 
2√𝑎0𝑏0 

completes the proof.      ∎ 

Lemma 3: The time headway transition function will not jeopardize the local stability of the EIDM-

based car-following control model. 

Proof: Akin to the proof of lemma 1, and assuming a homogeneous platoon, the variations of spacing 

perturbation around the car-following equilibrium can be expressed as: 

𝑦𝑛̈ = 𝑓𝑛
1�̇�𝑛 + 𝑓𝑛

2(𝑦𝑛−1 − 𝑦𝑛) + 𝑓𝑛
3(�̇�𝑛−1 − �̇�𝑛) + 𝑓𝑛

4(�̈�𝑛−1 − 𝑦𝑛̈ ) (27) 

2 
1 𝜎 𝑣𝑒𝑞 

𝜎−1 2(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑇𝑑𝑒𝑠 2 2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠) 3where 𝑓𝑛 = −𝜙𝑎0 [ ( ) + 2 ] , 𝑓𝑛 = 𝜙 3 , 𝑓𝑛 = 
𝑣𝑑𝑒𝑠 𝑣𝑑𝑒𝑠 𝑠𝑒𝑞 𝑠𝑒𝑞 

2𝑎0(𝑠0+𝑣𝑒𝑞𝑇𝑑𝑒𝑠)𝑣𝑒𝑞 4𝜙 , 𝑓𝑛 = 𝜓. Correspondingly, in the Laplace domain, the transfer function from 𝑦𝑛−1𝑠𝑒𝑞
2√𝑎0𝑏0 

to 𝑦𝑛 can be expressed as: 

2𝑌𝑛(𝓈) 𝑓𝑛
4𝑠2+𝑓𝑛

3𝑠+𝑓𝑛 Γ𝑛−1,𝑛(𝓈) = = 2 (28)
𝑌𝑛−𝑗(𝓈) (1+𝑓𝑛

4)𝑠2+(𝑓𝑛
3−𝑓𝑛

1)𝑠+𝑓𝑛 

where 𝓈 = 𝑖𝜔 is the Laplace operator, 𝑖 is the indicator of complex number, and 𝜔 is the angular 

frequency. 

As 𝑇(𝑡) ≥ 𝑇0, the time headway transition function (23) will not induce the desired time headway to be 

negative. Correspondingly, the following inequalities remain valid: 𝑓𝑛
1 < 0, 𝑓𝑛

2 > 0, 𝑓𝑛
3 > 0, 𝜓 > 0. 

Thus, the characteristic roots of (28) are in the left-hand side of the imaginary axis, which ensures the 

local stability of the EIDM-based car-following control model. This completes the proof. ∎ 

Remark 2: The proposed time headway transition function can smoothen the control transition from 

the lane-change preclusion model to the car-following control model. Further, it can also deal with 

disruptive cut-out and cut-in scenarios. Specifically, when the preceding vehicle suddenly leaves the 

existing platoon (i.e., changes lanes), or a vehicle abruptly cuts in front of the ego vehicle, the time 

headway transition function can assist the ego vehicle in dealing with the suddenly enlarged/reduced 

time headway in a smoother manner (i.e., mitigate the abrupt acceleration/deceleration). 
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3. NUMERICAL EXPERIMENTS 

This section discusses numerical experiments to illustrate the performance of the PLCS and conduct 

sensitivity analyses. They are conducted using Python in a computational environment consisting of 

CPU core i9, 32GB RAM, and a RTX2080 GPU. A baseline strategy, defined as scenarios without lane-

change preclusion (i.e., the ego vehicle is controlled only by the EIDM-based car-following control 

model), is used for comparison. To examine the generalizability of the PLCS, two different scenarios 

are considered, which generate large spacings and thus could induce lane changes: (i) a three-lane 

freeway scenario with vehicle E speeding, denoted as scenario 1 and shown in Fig. 7(a), and (ii) a three-

lane freeway scenario with vehicle G cutting out, denoted as scenario 2 and shown in Fig. 7(b). Further, 

various CV control setups and HDV driver types are considered, as discussed hereafter. 

3.1 Experiment setup 

The two lane-change scenarios shown in Fig. 7 are used to conduct numerical experiments. Two 150-

second trajectories and two 32-second trajectories in congested traffic (containing multiple stop-and-go 

movements) on I-80 freeway from the NGSIM dataset (Alexiadis et al., 2004), with a 10 Hz sampling 

frequency, are extracted as driving behaviors of vehicles E and F. Vehicle E in lane 2 has a higher 

average speed than vehicle F in lane 1, which would induce potential disruptive lane changes by vehicle 

B (the target vehicle) from lane 1 to lane 2. 

The two 150-second trajectories (shown in Fig. 8) are designed for scenario 1 where the sizable spacing 

between the ego vehicle A and vehicle E is caused by the speeding of vehicle E (Fig. 7(a)) and induces 

the HDV lane change. The two 32-second trajectories (shown in Fig. 9) are designed for scenario 2 

where the sizable spacing between the ego vehicle and vehicle E is caused by the cut-out behavior of 

vehicle G (Fig. 7(b)). 

The initial speeds for the other vehicles are identical to those of their own preceding vehicles, initial 

accelerations are 0, and initial relative spacings of vehicles are set as: 

,𝑠𝑗 = (𝑠0 + 𝑣𝑗𝑇)/√1 − (𝑣𝑗/𝑣𝑑𝑒𝑠)4 

where the desired speed 𝑣𝑑𝑒𝑠 is 30 m/s, and 𝑗 refers to vehicles A, B, C, and D. 

In scenario 2, the experiment starts at the time when vehicle G cuts out, and there is sizable spacing 

between the ego vehicle and vehicle E that induces a potential lane change by vehicle B. 
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(a) 

(b) 

Figure 7. Lane-change scenarios: (a) scenario 1, and (b) scenario 2. 

(a) (b) 

Figure 8. Trajectories of vehicles E and F in scenario 1: (a) acceleration profile, and (b) speed profile 
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(a) (b) 

Figure 9. Trajectories of vehicles E and F in scenario 2: (a) acceleration profile, and (b) speed profile 

The following models are used to generate the vehicle dynamics for the experiments. For HDVs (except 

vehicles E and F), the IDM (Treiber et al., 2000) is used to simulate the car-following behaviors with 

parameters of three HDV driver types (cautious, normal, and aggressive drivers) from Zhu et al. (2019), 

as shown in Table 1. The lane-change decision-making of vehicle B is described by the MOBIL model 

(Kesting et al., 2007) with parameters specified in Table 2. The MOBIL is a heuristic function that 

suggests vehicle B to change lanes if an acceleration improvement after a lane change is greater than a 

threshold value (i.e., a lane-change traffic condition is satisfied). The lane-change trajectory planning 

of vehicle B is performed using a k-nearest-neighbors (KNN) model (Altman, 1992) with 370 lane-

change trajectory samples extracted from the NGSIM dataset. For CVs, longitudinal commands are 

generated using the EIDM-based car-following control model of the PLCS. 

Three parameter sets of the EIDM are sampled from the string stability region in Equation (7) to 

simulate three CV control setups, as shown in Table 3. EIDM1 refers to platooning control with 

relatively smaller spacings to achieve high traffic capacity but relatively lower speed dampening. 

EIDM3 represents platooning control with relatively larger spacings to gain more speed dampening but 

relatively lower traffic capacity, and EIDM2 is in between EIDM1 and EIDM3 (i.e., medium levels of 

spacing and speed dampening). 

The experiments assume that vehicle B performs a lane change only if a lane-change time window 

(representing the persisting time steps of continuous lane-change suggestions from MOBIL) persists for 

at least 15 time steps (i.e., 1.5s, based on Finnegan & Green (1990)) and no potential collision occurs. 
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Table 1. Parameters of IDM 

𝑻 (s) 𝒂𝟎 (m/s2) 𝒃𝟎 (m/s2) 𝒔𝟎 (m) 

Aggressive ℕ(1.6, 0.2) ℕ(1.05, 0.08) ℕ(1.54, 0.08) ℕ(2, 0.5) 

Normal ℕ(2.57, 0.2) ℕ(0.87, 0.08) ℕ(1.14, 0.08) ℕ(2, 0.5) 

Cautious ℕ(3.16, 0.2) ℕ(0.8, 0.08) ℕ(1.08, 0.08) ℕ(2, 0.5) 

where: ℕ - normal distribution. 

Table 2. Parameters of MOBIL 

𝒑 𝒃𝒔𝒂𝒇𝒆 (m/s2) 𝚫𝒂𝒕𝒉 (m/s2) 

Aggressive 0 -8.0 0 

Normal 0.05 -5.0 0 

Cautious 0.05 -2.0 0 

where: 𝑝 – politeness factor, 

𝑏_𝑠𝑎𝑓𝑒 – maximum safe deceleration, 

Δ𝑎𝑡ℎ - lane-change threshold. 

Table 3. Parameters of EIDM 

𝑻 (s) 𝒂𝟎 (m/s2) 𝒃𝟎 (m/s2) 𝒔𝟎 (m) 𝝓 𝝍 

EIDM1 1.2 0.8 1.8 2 1 0.7 

EIDM2 1.2 0.8 1.5 2 0.85 0.6 

EIDM3 1.6 0.73 1.75 2 0.5 0.5 
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3.2 Model training 

3.2.1 LTC-predictor 

In this study, the LTC-predictor is constructed by concatenating a two-layer Transformer of width 256 

with four attention heads, and three fully connected layers. The hidden size of the feed-forward network 

in the Transformer is set to 512, and the hidden sizes in fully connected layers are 256, 128, and 64, 

respectively. The dropout value of inputs is set to 0.1 and the sequence length is set to 5 time steps. We 

choose the mean-squared-error loss function for the prediction of the driving behavior, and the cross-

entropy loss function for the disruptive lane-change traffic condition. The descriptions of the 

Transformer parameters are provided in Vaswani et al. (2017). 

For LTC-predictor training, an experiment is conducted with an EIDM-driven CV (the ego vehicle) to 

generate 297,600 data points with disruptive lane changes as the ground truth, where the disruptive lane 

changes induce harsh braking and large speed fluctuations to the following vehicle. Specifically, the 

generated traffic conditions (in terms of spacing, speed difference, and accelerations), which obtain 

lane-change suggestions from MOBIL and later induce disruptive lane changes, are used as the 

disruptive lane-change traffic conditions for the LTC-predictor training. The detailed description of the 

input and output data of the LTC-predictor has been introduced in Section 3.1. In the experiments, 80% 

of the generated data are used for training, 10% for validation, and the remaining 10% for testing. 

3.2.2 Lane-change preclusion model 

The neural network architecture of the RDQN in the lane-change preclusion model, as shown in Fig. 

10, is constructed by concatenating three CNN layers (hidden states of 32, 64, 128) with dropout value 

of 0.2 and three fully connected layers (hidden states of 896, 512, 512) with dropout value of 0.5. As 

the dimension of input in the RDQN is not very high, we do not consider pooling layers in the CNN 

layers. The architecture works as follow. First, the input data (state 𝒛 in the MDP) enters the CNN layers 

and experiences three convolutions: the first convolution with kernel size of 3, stride of 1, and padding 

of 1; the second convolution with kernel size of 2, stride of 1, and padding of 0; and the third convolution 

with kernel size of 2, stride of 1, and padding of 0. Then, the output from the CNN layers will be shaped 

into vectors and processed by the fully connected layers. Finally, the fully connected layers generate 

the output as Q values over the action space, and the action with the maximum Q value would be selected 

by the ego vehicle for action execution. 

In this study, the action 𝑢 of the lane-change preclusion model is defined in a discrete space 𝑈 from -

2.00 to 2.00 with a common difference of 0.01, i.e., 𝑈 = {−2.00, −1.99, … ,1.99, 2.00 }. The other 

hyperparameters of the lane-change preclusion model are tuned for optimal training convergence, as 

shown in Table 4. The learning rate is set to 0.0001, the total number of training episodes is 1000, the 

discount factor is 0.95, the batch size for training is 5120, and we update the neural network in the 
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RDQN every 10 episodes. During the model training, to balance the trade-off between the early 

exploration and later exploitation of the RDQN control policy, the 𝜖 in the epsilon greed algorithm in 

the policy rollouts module at each episode is define as following, 

𝑒𝑝𝑠
− 

𝜖 = 𝜖𝑒 + (𝜖𝑠 − 𝜖𝑒) ⋅ 𝑒 𝜖𝑑 (29) 

where 𝜖𝑠 and 𝜖𝑒 are the start and end values of the epsilon, 𝜖𝑑 refers to the epsilon decay rate, and 𝑒𝑝𝑠 
represents current training episode index. Here, we set 𝜖𝑠 = 1, 𝜖𝑒 = 0.01, and 𝜖𝑑 = 200. Then, the 𝜖 
values over the whole training episodes are shown as Fig. 11. As the 𝜖 represents the probability of 

choosing random actions for exploration, the large value of 𝜖, at the beginning stage of the training, 

encourages more explorations in the model training by generating random actions in the action space. 

As the training episode increases and more possible control policies the RDQN explored, the 𝜖 smoothly 

decay to small values, where the RDQN prefers to exploitations in the model training through generating 

actions by the trained control policy. 

Moreover, to enhance the generalizability of the trained lane-change preclusion model, various lane-

change scenarios and HDV driver types are considered in the RDQN model training. Specifically, for 

each training episode, the training environment will be randomly assigned with a lane-change scenario, 

as shown in Fig. 7, and a HDV driver type with driving behavior parameters from Tables 1 and 2. Then, 

the RDQN are trained of capability to handle different lane-change scenarios and HDV driver types. 

The scaling parameters in the MDP are determined based on a trial-and-error method to balance the 

trade-offs amongst all reward components in Equation (2), to achieve desired lane-change preclusion 

performance while retaining smoothness and safety. Finally, the cumulative reward effectively 

converges to around 1.14 within 1000 episodes of training, as shown in Fig. 12. The positive sign of the 

reward value indicates that the obtained optimal policy precludes undesired collision and reverse 

movements (otherwise, reward will be negative due to the significant penalty δ in the safety reward 

component in Equation (20)). 

3.3 Results and discussion 

We first examine the performance of the LTC-predictor in predicting the driving behavior of vehicle B 

and disruptive lane-change traffic conditions. Second, the effectiveness of the PLCS in precluding 

disruptive HDV lane changes, reducing oscillations, and improving traffic smoothness is evaluated in 

presence of different lane-change scenarios. Third, we conduct sensitivity analysis of the PLCS to 

investigate its effectiveness under different HDV driver types and CV control setups. Fourth, the 

performance of the time headway transition function is evaluated in smoothening control transition from 

the lane-change preclusion model to the car-following control model and reducing oscillations in lane-

change preclusion failure cases. Finally, comprehensive discussions of the PLCS performance and its 

key limitations are provided. 
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3.3.1 Performance of LTC-predictor 

Mean-square-error (MSE) is used as the performance metric for the LTC-predictor in terms of 

predicting driving behaviors of vehicle B and disruptive lane-change traffic conditions. The MSE 

between the predicted accelerations and the ground-truth accelerations of vehicle B across all testing 

data is 1.7e-06. The MSE between the predicted occurrences of disruptive lane-change conditions and 

the indications of ground-truth lane changes from MOBIL over all testing data is 4.8e-03. These results 

illustrate the robustness of the LTC-predictor. 

3.3.2 Performance of PLCS 

Three measurement metrics are introduced to examine the effectiveness of the PLCS under lane-change 

preclusion: (i) lane-change rate of vehicle B (denoted as CR here), which is the ratio of the number of 

experiments with lane change occurrence to the total number of experiments; (ii) variance of speed (VS) 
𝑘𝑡𝑜𝑡𝑎𝑙 of the ego vehicle over the experiment duration 𝑘𝑡𝑜𝑡𝑎𝑙: 𝑉𝑆(𝑣(𝑘)) = (∑ (𝑣(𝑘) − �̅�)2)/𝑘𝑡𝑜𝑡𝑎𝑙; and k=0 

𝑘𝑡𝑜𝑡𝑎𝑙 (iii) fluctuation of acceleration (FA) of the ego vehicle: 𝐹𝐴(𝑎(𝑘)) = (∑ (𝑎(𝑘) − 𝑎(𝑘 − 1))2)/𝑘=0 

𝑘𝑡𝑜𝑡𝑎𝑙 , where 𝑣(𝑘) and 𝑎(𝑘) are longitudinal speed and acceleration of the ego vehicle at time 𝑘 , 

respectively. �̅� is the mean longitudinal speed of the ego vehicle. 𝑘𝑡𝑜𝑡𝑎𝑙 refers to the time duration of 

the experiment. 

The PLCS is applied in both lane-change scenarios. Then, controlled experiments using the baseline 

strategy (i.e., the ego vehicle is controlled only by the EIDM-based car-following control model) are 

conducted and the results are used for comparison. Each strategy is executed over 1000 times in each 

scenario. In the experiments, the CV control setup of the ego vehicle is set as EIDM2, and vehicle B is 

assumed to be of the normal driver type. In scenario 1, the baseline strategy induces 87.4% HDV lane 

changes (i.e., CR of 87.4%) with VS of 8.2931 and FA of 1.2456, on average, while the PLCS induces 

43.4% HDV lane changes with VS of 5.0911 and FA of 0.1936, on average. In scenario 2, the baseline 

strategy induces 86.5% HDV lane changes with VS of 5.8768 and FA of 0.8061, on average, while the 

PLCS induces 14.4% HDV lane changes with VS of 1.8674 and FA of 0.0792, on average. The results 

indicate that in both scenarios the PLCS is effective in precluding disruptive lane changes and thus 

improves traffic smoothness. 
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Figure 10. The RDQN architecture 

Table 4. Parameters of lane-change preclusion model 

MDP RDQN 
𝜽𝒍 0.5 Learning rate 0.0001 
𝜽𝒔 1 Episode number 1000 
𝜽𝒂 0.1 Discount factor 0.95 
𝜽𝒗 1 Batch size 5120 
𝜹 10 Target update rate 10 
𝑼 {−𝟐. 𝟎𝟎, −𝟏. 𝟗𝟗, … , 𝟏. 𝟗𝟗, 𝟐. 𝟎𝟎} 

Figure 11. Epsilon greedy decay. 
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Figure 12. Reward convergence of RDQN training. 

To further illustrate the performance differences between the PLCS and the baseline strategy, speed, 

and acceleration profiles of typical cases in the experiments are illustrated in Figs. 13 and 14 for the two 

scenarios. 

The vertical dashed line represents the time at which the LTC-predictor indicates a disruptive lane-

change traffic condition. For the baseline strategy, due to the large spacing between vehicle E and the 

ego vehicle caused by either the speeding behavior of vehicle E in scenario 1 or the cut-out of vehicle 

G in scenario 2, a disruptive lane change occurs by vehicle B from lane 2 to lane 1 (dash-dotted lines in 

Figs. 13(a), 13(c), 14(a) and 14(c)). 

This lane change causes abrupt braking by the ego vehicle and the following vehicle C (as shown in 

Figs. 13(a) and 14(a)), and significant speed fluctuation in the CV platoon as shown in Figs. 13(c) and 

14(c). In contrast, as shown in Figs. 13(b), 13(d), 14(b), and 14(d), using the PLCS, the ego vehicle 

successfully precludes the potential lane change by vehicle B (improving the CV platoon smoothness) 

and then smoothly switches back to car-following behavior without generating additional oscillations. 

Hence, the PLCS can deal with disruptive HDV lane changes under different lane-change scenarios. 

Thereby, it successfully precludes disruptive lane changes, reduces oscillations, and improves traffic 

smoothness. 
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(a) (b) 

(c) (d) 

Figure 13. Performance comparison under scenario 1: (a) acceleration profile of baseline strategy, 

(b) acceleration profile of PLCS, (c) speed profile of baseline strategy, and (d) speed profile of PLCS 
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(a) (b) 

(c) (d) 

Figure 14. Performance comparison under scenario 2: (a) acceleration profile of baseline strategy, 

(b) acceleration profile of PLCS, (c) speed profile of baseline strategy, and (d) speed profile of PLCS. 
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3.3.3 Sensitivity analysis of PLCS 

To examine the generalizability of the PLCS, experiments are conducted for the six lane-change cases 

shown in Table 5 consisting of various lane-change scenarios and HDV driver types. The corresponding 

parameter sets of the IDM and MOBIL are from Kesting et al. (2007) and Zhu et al. (2019), respectively, 

as shown previously in Tables 1 and 2. The experiments first seek to investigate the susceptibility of the 

ego vehicle in inducing lane changes by vehicle B. This is done by assuming that vehicle B will not 

execute any lane changes, and then comparing the lane-change time windows (i.e., the persisting time 

steps of continuous lane-change suggestions from MOBIL) in six cases, as shown in Table 6. 

Table 6 shows that the PLCS has smaller lane-change time windows than that of the baseline strategy 

under all CV control setups. This suggests that it provides fewer lane-change opportunities to vehicle 

B. Table 7 shows that the PLCS has smaller CR values (i.e., lane-change rates) than the baseline strategy, 

illustrating its effectiveness in precluding more disruptive lane changes by vehicle B in all cases. The 

successful lane-change preclusion can be observed from the speed profiles in Figs. 15(b), 15(d), and 

16(d). However, the PLCS fails to preclude lane change by vehicle B in Fig. 15(f), where the ego vehicle 

is controlled under EIDM3. This is because EIDM3 ensures the CV’s string stability by maintaining a 
larger spacing with the preceding vehicle. The large spacing induces vehicle B to conduct a disruptive 

lane change more easily, while increasing the difficulty of preclusion. In addition, the PLCS fails when 

the HDV driver is aggressive, as shown in Fig. 16(b). In summary, the PLCS can successfully preclude 

disruptive HDV lane changes in most scenarios. However, a CV control setup for string stability (i.e., 

EIDM3) or aggressive HDV drivers can limit its ability for preclusion. 

Table 5. Lane-change cases in experiments 

Case Lane-change scenario HDV driver type 

1 Scenario 1 Aggressive 

2 Scenario 1 Normal 

3 Scenario 1 Cautious 

4 Scenario 2 Aggressive 

5 Scenario 2 Normal 

6 Scenario 2 Cautious 
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Table 6. Lane-change time window 

Case 
Lane-change time window 

1 2 3 4 5 6 

Baseline 22.189 14.649 7.464 39.631 23.014 6.658 
EIDM1 

PLCS 14.595 8.269 4.56 19.461 6.975 2.25 

Baseline 29.759 21.457 14.161 45.15 30.1 12.519 
EIDM2 

PLCS 18.664 11.546 8.19 22.273 9.231 4.691 

Baseline 72.327 59.564 48.757 88.392 71.544 49.865 
EIDM3 

PLCS 39.646 27.442 22.882 35.528 17.951 11.982 

Table 7. Lane-change rate 

Case 
CR 

1 2 3 4 5 6 

Baseline 89.80% 64.70% 6.10% 99.80% 72.10% 16.50% 
EIDM1 

PLCS 61.20% 0.00% 0.00% 91.40% 6.60% 0.10% 

Baseline 98.90% 87.40% 49.80% 99.80% 86.50% 42.00% 
EIDM2 

PLCS 90.90% 43.40% 0.10% 99.30% 14.40% 1.30% 

Baseline 100.00% 100.00% 100.00% 100.00% 100.00% 99.90% 
EIDM3 

PLCS 100.00% 93.80% 96.20% 100.00% 36.60% 17.90% 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 15. Speed profile in scenario 1 with normal HDV driver: (a) baseline strategy of EIDM1, (b) 

PLCS of EIDM1, (c) baseline strategy of EIDM2, (d) PLCS of EIDM2, (e) baseline strategy of 

EIDM3, and (f) PLCS of EIDM3. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 16. Speed profile in scenario 2 with CV control setup of EIDM1: (a) baseline strategy of 

aggressive HDV, (b) PLCS of aggressive HDV, (c) baseline strategy of normal HDV, (d) PLCS of 

normal HDV, (e) baseline strategy of cautious HDV, and (f) PLCS of cautious HDV. 
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Tables 8 and 9 illustrate that the PLCS generates smaller VS and FA values than those of the baseline 

strategy in most cases. It also causes fewer speed fluctuations for the ego vehicle than the baseline 

strategy, as illustrated by the speed profiles of Figs. 15 and 16. The ego vehicle controlled by the PLCS 

performs better than the baseline strategy in terms of reducing oscillations and improving smoothness 

in most cases. But, in some special cases, e.g., a CV control setup of EIDM3 or aggressive HDV drivers, 

the PLCS generates larger VS and FA values than those of the baseline strategy. These additional 

oscillations are caused by the lane-change preclusion failures, where the ego vehicle performs 

accelerations during the lane-change preclusion and abruptly switch to decelerations in the car-

following control model to maintain safety. In summary, in most scenarios, the PLCS is effective in 

dealing with disruptive HDV lane changes, reducing oscillations, and improving traffic smoothness 

under various lane-change scenarios, CV control setups, and HDV driver types. But a CV control setup 

for string stability (i.e., EIDM3) or aggressive HDV drivers can limit its performance in traffic 

smoothness. 

Tables 7, 8, and 9 illustrate CR, VS, and FA, respectively, when vehicle B executes lane changes. Note 

that results of Tables 6, 7, 8, and 9 are mean values over 1000 runs of experiments. Fig. 15 shows the 

speed profiles of the two control strategies in scenario 1 for a normal HDV driver and the three CV 

control setups (i.e., EIDM1, EIDM2, and EIDM 3). Fig. 16 illustrates the speed profiles of the two 

control strategies in scenario 2 for the three HDV driver types and the CV control setup of EIDM1. 

Table 8. Variance of speed 

Case 
VS 

1 2 3 4 5 6 

Baseline 7.8365 7.2872 6.4846 1.8577 5.0661 0.9408 
EIDM1 

PLCS 5.1127 6.2468 5.8407 4.9024 1.1914 0.2532 

Baseline 6.0492 8.2931 6.5887 1.4276 5.8768 2.2090 
EIDM2 

PLCS 3.5119 5.0911 6.1183 4.3680 1.8674 0.4992 

Baseline 4.5233 2.4324 2.0840 0.0759 0.9809 4.0715 
EIDM3 

PLCS 5.1098 3.1181 2.3470 2.2990 4.1020 3.0497 
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Table 9. Fluctuation of acceleration 

FA 
1 2 3 

Case 

4 5 6 

EIDM1 
Baseline 

PLCS 

1.1875 

0.3963 

0.8355 

0.0457 

0.0549 

0.0388 

0.5442 

0.3095 

0.6782 

0.0641 

0.1345 

0.0174 

EIDM2 
Baseline 

PLCS 

1.0845 

0.3176 

1.2456 

0.1936 

0.5601 

0.0452 

0.4614 

0.2374 

0.8061 

0.0792 

0.3258 

0.0259 

EIDM3 
Baseline 

PLCS 

0.0111 

0.0777 

0.0946 

0.0962 

0.3615 

0.0942 

0.0051 

0.0926 

0.1533 

0.1481 

0.6015 

0.1418 

3.3.4 Performance of time headway transition function 

The failure of lane-change preclusion can induce additional oscillations during the lane change 

maneuver of vehicle B (as shown in the non-smooth speed profiles in Figs. 15(f) and 16(b)). Due to the 

abrupt acceleration and high speed of the ego vehicle during lane-change preclusion and the small 

spacing between the ego vehicle and vehicle B after preclusion, the car-following control model of the 

PLCS can cause significant decelerations in the ego vehicle after the failure of the lane-change 

preclusion than under the baseline strategy. The time headway transition function described in Section 

3.4 is used to handle this problem. 

To analyze the effectiveness of the time headway transition function, the performance of the baseline 

strategy and the PLCS are compared with and without the time headway transition function. To simplify 

the comparison and focus on the effect of the transition function, only one example is presented, which 

is constructed based on both lane-change scenarios, EIDM2 CV control setup, and aggressive HDV 

driver type. Speed profiles of this example are shown in Figs. 17 and 18. Figs. 17(c), 17(d), 18(c), and 

18(d) illustrate that the ego vehicle controlled by the PLCS without time headway transition generates 

substantial decelerations after the failure of the lane-change preclusion. By contrast, Figs. 17(e), 17(f), 

18(e), and 18(f) show that the time headway transition function in the PLCS successfully alleviates 

abrupt decelerations by the ego vehicle, reduces additional oscillations, and ensures smooth platoon 

operation. Further, the failure of lane-change preclusion leads to degraded performance under the PLCS 

in some lane-change cases, as shown in Figs. 18(a), 18(b), 18(e), and 18(f). However, the time headway 

transition function enables the PLCS to perform smoother in other lane-change preclusion failure cases, 

as shown in Figs. 17(a), 17(b), 17(e), and 17(f). 

In summary, the results indicate that the proposed time headway transition function can enable smooth 

control transition from the lane-change preclusion model to the car-following control model, and better 

manage situations with lane-change preclusion failures. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 17. Performance comparison under lane-change preclusion failure in scenario 1: (a) 

acceleration profile of baseline strategy, (b) speed profile of baseline strategy, (c) acceleration profile 

of PLCS without time headway transition, (d) speed profile of PLCS without time headway transition, 

(e) acceleration profile of PLCS, and (f) speed profile of PLCS. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 18. Performance comparison under lane-change preclusion failure in scenario 2: (a) 

acceleration profile of baseline strategy, (b) speed profile of baseline strategy, (c) acceleration profile 

of PLCS without time headway transition, (d) speed profile of PLCS without time headway transition, 

(e) acceleration profile of PLCS, and (f) speed profile of PLCS. 
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3.3.5 Discussions and limitations 

The experiments in this section have examined the performance of the PLCS under different lane-

change scenarios, CV control setups, and HDV driver types. Results in Tables 6 and 7 demonstrate that 

the PLCS provides fewer lane-change opportunities to vehicle B and preclude more disruptive HDV 

lane changes than the baseline strategy. However, as shown in Table 7, the PLCS does not successfully 

preclude all disruptive lane changes, and it fails in some situations with the CV control setup for string 

stability (i.e., EIDM3) or aggressive HDV drivers. This is consistent with the fundamental mechanism 

and control framework of the PLCS. The PLCS is not designed to directly block the lateral lane-change 

maneuver by vehicle B, but proactively preclude the potential disruptive lane change before vehicle B 

initiates the lane-change maneuver. To avoid unsafe CV-HDV interactions and maintain safety, it will 

automatically stop the lane-change preclusion process and let vehicle B cut in, if the ego vehicle 

observes the lane-change maneuver performed by vehicle B. In situations with large spacing setup (i.e., 

EIDM3) or aggressive HDV drivers, it is of challenge for the ego vehicle to preclude the disruptive lane 

change by vehicle B given a short response time (i.e., 1.5 seconds in the experiment, based on Finnegan 

& Green (1990)) before vehicle B perform lane-change maneuvers. Thus, the PLCS is still effective in 

precluding disruptive HDV lane changes in a safe manner in most situations. 

In addition, results in Tables 8 and 9 demonstrate that the PLCS can enhance traffic smoothness in most 

cases. However, in some special lane-change failure cases, the PLCS still generate more oscillations 

than the baseline strategy even with the enhancement of the time headway transition function. This is 

the key limitation of the PLCS, that is, precluding disruptive lane changes does not always improve 

traffic smoothness in all situations. Instead, in some situations, e.g., aggressive HDV drivers, assisting 

lane changes might be a better choice. For future research, it is suggested to develop a proactive lane-

change assistance control strategy to complement the PLCS in managing disruptive HDV lane changes. 

However, considering only the lane-change preclusion strategy domain, the PLCS successfully balance 

the trade-off between traffic efficiency and safety, and in most scenarios, it is effective in precluding 

disruptive HDV lane change, reducing oscillations, and improving traffic smoothness under various 

lane-change scenarios, CV control setups, and HDV driver types. 
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4. CONCLUDING COMMENTS 

This paper proposes a deep reinforcement learning-based proactive longitudinal control strategy (PLCS) 

for CVs to preclude disruptive lane changes by HDVs, reduce oscillations, and improve string stability 

of the CV platoons. To the best of the authors’ knowledge, this is the first study to investigate proactive 

preclusion of HDV lane changes by leveraging lane-change-related traffic information obtained by CVs 

and real-time CV-HDV interactions to foster traffic smoothness. The PLCS includes four components: 

Transformer-based LTC-predictor, EIDM-based car-following control model, RDQN-based lane-

change preclusion model, and time headway transition function. When the Transformer-based LTC-

predictor indicates a lane-change traffic condition, implying the potential for disruptive lane change by 

the HDV in adjacent lane, the RDQN-based lane-change preclusion model takes over and controls the 

CV to preclude disruptive lane changes. When no disruptive lane-change traffic condition is indicated 

by the LTC-predictor, the CV switches to the EIDM-based car-following control model and performs 

smooth car-following behavior under cooperative platooning control. A time headway transition 

function is proposed to smoothen the control transition from the lane-change preclusion model to the 

car-following control model, which prevents the ego vehicle from causing additional oscillations in 

lane-change preclusion failure cases. Results from numerical experiments indicate that the PLCS is 

effective in precluding disruptive HDV lane changes in mixed-flow traffic and improving CV platoon 

smoothness. The sensitivity analysis illustrates the generalizability of the PLCS under different lane-

change scenarios, CV control setups, and HDV driver types. 

The PLCS is designed to preclude disruptive HDV lane changes to reduce their adverse impacts on CV 

platoons. However, in some situations, e.g., a lane-merging scenario caused by an accident and 

mandatory lane changes exist, precluding disruptive lane changes can deteriorate the traffic performance 

and the CV need to assist HDV lane changes while maintaining safety and traffic smoothness. A future 

research direction is to develop proactive control strategies for CVs to manage HDV lane changes while 

seeking to balance lane-change preclusion and lane-change assistance objectives. Another research 

direction is to use a driving simulator environment to analyze the performance of the PLCS under 

mixed-flow traffic environments while eliciting real-world driver behaviors. Further, the PLCS focuses 

on controlling a CV in a lane-change scenario involving a single HDV lane change. It can be extended 

to a multi-agent cooperative lane-change management control strategy in multi-lane-change scenarios. 
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5. OUTPUTS, OUTCOMES, AND IMPACTS 

5.1 List of research outputs (publications, conference papers, and presentations) 

• Zhou, A., & Peeta, S. (2021). Cooperative Driving in Mixed-flow Traffic of Connected Vehicles 

and Human-driven Vehicles: A State Estimation Approach [Poster presentation]. In 100th 

Annual Meeting of the Transportation Research Board. 

• Liu, Y., Zhou, A., Wang, Y., & Peeta, S. (2021). Proactive Longitudinal Control to Manage 

Disruptive Lane Changes of Human-Driven Vehicles in Mixed-Flow Traffic [Paper 

presentation]. IFAC-PapersOnLine, 54(2), 321-326. 

• Liu, Y., Zhou, A., Wang, Y., & Peeta, S. (2021, September). Proactive Longitudinal Control of 

Connected and Autonomous Vehicles with Lane-Change Assistance for Human-Driven 

Vehicles [Paper presentation]. In 2021 IEEE International Intelligent Transportation Systems 

Conference (ITSC) (pp. 776-781). IEEE. 

• Liu, Y., Zhou, A., Wang, Y., & Peeta, S. (2022). Proactive Longitudinal Control to Manage 

Disruptive Lane Changes of Human-Driven Vehicles in Mixed-Flow Traffic [Poster 

presentation]. In 101st Annual Meeting of the Transportation Research Board. 

• Liu, Y., Zhou, A., Wang, Y., & Peeta, S. (2022). Proactive Longitudinal Control of Connected 

and Autonomous Vehicles with Lane-Change Assistance for Human-Driven Vehicles [Poster 

presentation]. In 101st Annual Meeting of the Transportation Research Board. 

5.2 Outcomes 

This research project investigates the CV car-following mechanism in mixed-flow traffic and addresses 

the adverse impacts from lane changes by HDVs in adjacent lanes. Thereby, the proposed study will 

enhance the effectiveness and reliability of CV platooning operations in mixed-flow traffic environment. 

Besides, this project extends existing cooperative platooning control to multi-lane scenarios by 

successfully handle HDV lane-change challenges in mixed-flow traffic, such that the desired platoon 

control performance can be achieved to improve traffic flow. 

5.3 Impacts 

Connected vehicles (CV) technologies have the potential to help drivers make safe, reliable, and 

informed decisions, and thereby to enhance network capacity and reduce congestion. This project 

investigates a CV car-following model to reveal the CV movement characteristics during CV-HDV 

interactions and generate realistic CV trajectories in mixed flow environments. From the perspective of 
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transportation operation, the research outcomes shed lights on the future development CV platoon 

control to benefit the traffic flow in mixed-flow traffic. From the perspective of human quality-of-life 

and environment, the platoon control methods proposed in this project help enhance traffic safety, 

improve traffic efficiency, and reduce traffic oscillation. 

5.4 Tech Transfer 

In the execution of the project titled non-connected vehicle detection using connected vehicles – Phase 

2, the research team undertook several technology transfer activities. The team gave three presentations 

at the TRB annual meeting, a conference with over 14,000 attendees; one presentation at the IFAC CTS 

conference; and one presentation at the IEEE International Conference on Intelligent Transportation 

Systems. The list below summarizes the tech transfer activities undertaken by the research team through 

the course of this project: 

In 2021: 

1. Conference presentation at the 100th Annual Meeting of the Transportation Research Board, 

Washington, D.C., USA: Cooperative Adaptive Cruise Control for Connected Autonomous Vehicles 

by Factoring Communication-Related Constraints, Wang, C., Gong, S. and Peeta, S. (2021). 

2. Conference presentation at the 16th IFAC symposium on control in transportation systems, Lille, 

France: Proactive Longitudinal Control to Manage Disruptive Lane Changes of Human-Driven 

Vehicles in Mixed-Flow Traffic, Liu, Y., Zhou, A., Wang, Y., and Peeta, S. (2021). 

3. Conference presentation at the 24th IEEE International Conference on Intelligent Transportation 

Systems, Indianapolis, IN, USA: Proactive Longitudinal Control of Connected and Autonomous 

Vehicles with Lane-Change Assistance for Human-Driven Vehicles, Liu, Y., Zhou, A., Wang, Y., and 

Peeta, S. (2021). 

In 2022: 

1. Conference presentation at the 101st Annual Meeting of the Transportation Research Board, 

Washington, D.C., USA: Proactive Longitudinal Control to Manage Disruptive Lane Changes of 

Human-Driven Vehicles in Mixed-Flow Traffic, Liu, Y., Zhou, A., Wang, Y., and Peeta, S. (2022). 

2. Conference presentation at the 101st Annual Meeting of the Transportation Research Board, 

Washington, D.C., USA: Proactive Longitudinal Control of Connected and Autonomous Vehicles with 

Lane-Change Assistance for Human-Driven Vehicles, Liu, Y., Zhou, A., Wang, Y., and Peeta, S. (2022). 
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